Bayesian Neural Network Modeling and Hierarchical MPC for a Tendon-Driven Surgical Robot With Uncertainty Minimization
نویسندگان
چکیده
In order to guarantee precision and safety in robotic surgery, accurate models of the robot proper control strategies are needed. Bayesian Neural Networks (BNN) capable learning complex provide information about uncertainties learned system. Model Predictive Control (MPC) is a reliable strategy ensure optimality satisfaction constraints. this work we propose use BNN build highly nonlinear kinematic dynamic tendon-driven surgical robot, exploit epistemic by means Hierarchical MPC (Hi-MPC) strategy. Simulation real world experiments show that method ensuring tip positioning, while satisfying imposed bounds on kinematics dynamics robot.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملHierarchical Recurrent Neural Network for Document Modeling
This paper proposes a novel hierarchical recurrent neural network language model (HRNNLM) for document modeling. After establishing a RNN to capture the coherence between sentences in a document, HRNNLM integrates it as the sentence history information into the word level RNN to predict the word sequence with cross-sentence contextual information. A two-step training approach is designed, in wh...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE robotics and automation letters
سال: 2021
ISSN: ['2377-3766']
DOI: https://doi.org/10.1109/lra.2021.3062339